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INTRODUCTION

With the end of clock scaling and the limited power
budget available (20-30MW), future supercomputers will
meet exascale performance primarily through a higher
level of parallelism. Current operating (OS) and runtime
(RT) systems are designed for the classical SMP model
and based on the static and coarse-grained process/thread
paradigm. They do not provide the required level of
flexibility, especially within a single compute node, to
meet the requirements imposed by exascale systems in
terms of power/energy efficiency, resilience, managing
concurrency and performance portability.

The high level of concurrency poses new challenges
specific to exascale systems that need to be addressed
by novel solutions. In particular, requiring the user to
manage billions of concurrent threads could easily result
in poor data locality, clogged interconnection networks,
unchecked propagation of soft errors, and lack of con-
trol over power/energy consumption. Equally important,
managing such level of concurrency interferes with the
user’s focus on the application and the algorithm.

We envision that the computation will be encapsulated
into fine-grained tasks that can be isolated and protected
from the other tasks running in the system. Whenever a
task needs to work on some data that is not stored on
the local node, the OS/RT allows the task to be migrated
to the node that owns the data. Each task is associated
with a contained state (set or architectural registers, stack
frame, running node, etc.) that describes the progress
of the task and that should be moved together with
the task’s code. We believe system support for task
migration is a fundamental function that can ease the
job of tackling several of the exascale challenges.

This support contrasts with the current message-
passing models, in which data is moved to the node
where computation is preformed — an approach that
strives to minimize reliance on the operating system [1].
In more detail, support for fine-grained task migration
has a direct impact on the following:

a) Performance: OS/RT support for fine-grained
task migration enables automated mechanisms to tolerate
variations in the execution environment that result in load
imbalance. Whether the load imbalance is induced by
faults (i.e., some tasks have to be re-executed because the
experienced an error in the previous execution), localized
power considerations, or changes in the application’s
parallelism profile, tasks can be migrated from heavily
loaded nodes to nodes where there is availability of
computing resources. This low-level feature well suites
the high-level, task-based programming models, such as
Cilk [2], [3], Chapel [4], and Charm++ [5]. In particular,
while stack-less tasks have traditionally been supported
through compiler transformations [3], [6], efficient sup-
port for tasks with stack state requires operating system
support. Rather than rely on specific programming mod-
els for the exascale, an unforeseeable challenge, it is
more reasonable to provide the fundamental constituent
functionality that will be essential to build them. We
believe OS support for task-migration can perform the
basis for a broad set of exascale programming models
that support fine-grained concurrency.

b) Power/Energy: The data footprint of exascale
applications is expected to be considerably larger than
today’s applications. In this scenario, current OS/RT
models based on message-passing require data exchange
among the application’s tasks, which has a direct impact
on the total system power consumption. Conversely,
since the application’s code is duplicated on all compute
nodes, only the task’s state and the input parameters
need to be transferred to a remote node. We can quan-
tify these movements in the order of tens/hundreds
of kilobytes as opposed to movements of hundreds
of megabytes/gigabytes required to transfer data, with
proportional power and energy savings.

c) Resilience: Fine-grained task migration is inher-
ently fault tolerant. Migrating a task from one node to
another requires saving the task’s state on the origin
node and moving it to a destination node. This is
equivalent to taking a checkpoint of the task and even-
tually restarting it on a remote node in case of a fault.



Should a task experience a fault during its execution,
the OS/RT simply restarts the task from the last valid
state (the one transferred to the local node or saved
on the origin node) potentially with little intervention
from the programmer. Once the execution of a task is
marked as completed and reliable, the new state can
be saved (checkpointed) and used as the last valid state
in the ensuing computation. This approach enables fine-
grained, reliable checkpointing without expensive global
synchronization.

d) Locality: Exploiting locality is another of the
characteristics intrinsic to the fine-grained task migration
model. Since computation can be moved to where the
data is stored and since the tasks’ state is orders of mag-
nitude smaller than the application’s data footprint, data
movement is reduced to the task’s parameters required
to perform computation on the destination node.

CHALLENGES ADDRESSED

We address several key exascale challenges. The abil-
ity to save and migrate task state enables efficient load-
balanced execution of a broad class of programming
models, such as Charm++ [5], qthreads [7], Chapel
tasks [2], [3], that represent computation as consisting of
a disjoint unit of control, data (possibly on heap), and
stack state. Task migration also enables the design of
programming languages and runtimes to tolerate varia-
tions due to power/energy constraints or faults. The avail-
ability of this functionality at the fundamental OS level
also enables performance portability of a broad class of
applications on emerging architectures, without requiring
repeated rewriting of applications and runtimes.

MATURITY AND NOVELTY

There has been work on programming model and
architecture support for task migration in a variety of
contexts [3]–[6], [8]–[11]. However, these efforts are
limited by the fact that current OSs do not support
fine-grained task migration efficiently, which we believe
it is fundamental for exascale systems. These research
experiences lead us believe that efficient OS/RT support
for fine-grained task migration will be feasible and
broadly adopted.

UNIQUENESS

Existing commercial approaches that employ task mi-
gration, such as Hadoop and MapReduce, do not try
to address this problem because they are mainly design
for different workload/scenarios where performance and
efficiency are not of paramount importance.

APPLICABILITY

A successful implementation of efficient OS/RT sup-
port for task migration will strongly influence the de-
sign of programming models that explore fine-grained
concurrency. This effort will also influence and guide
architectural support for micro-checkpointing, transac-
tional memory, thread-level speculation, etc.

EFFORT

Given the influence of this effort on architectural
design and programming models, we believe the effec-
tiveness of this approach, in the form of prototypes,
needs to be proved early in the exascale roadmap. This
could be achieved through multiple small coordinated
efforts that explore competing approaches to fine-grained
task migration in the OS/RT.
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